A Generalized Mean Value Inequality for Subharmonic Functions and Applications
نویسنده
چکیده
If u ≥ 0 is subharmonic on a domain Ω in Rn and p > 0, then it is well-known that there is a constant C(n, p) ≥ 1 such that u(x)p ≤C(n, p)M V (up,B(x,r)) for each ball B(x,r) ⊂ Ω. We recently showed that a similar result holds more generally for functions of the form ψ◦ u where ψ : R+ → R+ may be any surjective, concave function whose inverse ψ−1 satisfies the ∆2-condition. Now we point out that this result can be extended slightly further. We also apply this extended result to the weighted boundary behavior and nonintegrability questions of subharmonic and superharmonic functions.
منابع مشابه
Subharmonic Functions, Mean Value Inequality, Boundary Behavior, Nonintegrability and Exceptional Sets
We begin by shortly recalling a generalized mean value inequality for subharmonic functions, and two applications of it: first a weighted boundary behavior result (with some new references and remarks), and then a borderline case result to Suzuki’s nonintegrability results for superharmonic and subharmonic funtions. The main part of the talk consists, however, of partial improvements to Blanche...
متن کاملBi-Lipschitz Mappings and Quasinearly Subharmonic Functions
After considering a variant of the generalized mean value inequality of quasinearly subharmonic functions, we consider certain invariance properties of quasinearly subharmonic functions. Kojić has shown that in the plane case both the class of quasinearly subharmonic functions and the class of regularly oscillating functions are invariant under conformal mappings. We give partial generalization...
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملTraces of Subharmonic Functions to Fractal Sets
We study traces of a class of subharmonic functions to Ahlfors regular subsets of Cn. In particular, we establish for the traces a generalized BMOproperty and the reverse Hölder inequality.
متن کاملSome new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives
In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003